If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x=51
We move all terms to the left:
2x^2-4x-(51)=0
a = 2; b = -4; c = -51;
Δ = b2-4ac
Δ = -42-4·2·(-51)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{106}}{2*2}=\frac{4-2\sqrt{106}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{106}}{2*2}=\frac{4+2\sqrt{106}}{4} $
| -5x+42=72 | | 7u-2u=25 | | 5u+13=7(u+1) | | 3+6x-4x=-1x-30 | | 3(3x+3)=14x+8-5x+1 | | 5(x+2)=72 | | (5-2)x-23=(-2) | | 5x-2=14x-102 | | 196=-y+56 | | 8x-3=72 | | 3(x+5)=30÷x | | 10+-2d=20 | | -2n+1=-3 | | 6(2-2x)=6x+3 | | 24q+10=72 | | -21=-6x-2x+3 | | 2/3x-1/6=5/2-3x | | 25=n-6+(-19) | | 4x8+2x3= | | 10=4f-3 | | x/21=3/36 | | 3j+4=4j+1 | | 2(-3)=4n1 | | 2y-11=4 | | (5x+3)-31=17 | | 4x-2°=5x+8°=3x+6° | | 4x=2(x-5)+16 | | -15+a=-9 | | 6d+6=18 | | 9f+10f-12f=0 | | n+8(5-n)=84 | | 5(x+2)=8x-3 |